Sources and Sinks in Functional Brain Networks

Keith Dillon

November 24, 2025

Abstract

In this paper we measured the degree to which functional brain activity signals in resting-state BOLD
fMRI could be predicted using a scalable self-supervised learning approach. Such predictability is at the core
of methods ranging from using simple correlations to identify edges of a network to large foundation models
of brain activity. To provide interpretability we trained a linear autoencoder to predict the fMRI time series
using its past history. We first analyzed the variation in prediction error between brain regions, finding
it highest in visual and motor regions and lowest in limbic and subcortical regions. We then investigated
regions that were involved in predictive activity but were less able to be predicted themselves, which we call
sources, or else were able to be predicted but contributed less to predictability of other regions, which we call
sinks. We found higher-order sensory regions to be the most prominent sources, while motor coordination
and primary visual regions were the most prominent sinks.

Introduction

A wide range of methods have been applied to functional imaging data to estimate information of scientific or
clinical interest. Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI) [12]
has been especially popular in such research as it is noninvasive and provides relatively high spatial resolution.
Initial research identified regions where brain activity correlated with different tasks or self-reported brain states.
But it became apparent that many complex brain states, as well as mental illnesses such as schizophrenia [14],
could not be pinpointed as a deficit in a specific brain region. The subsequent assumption has been that
these might be described as resulting from coordinated activity, referred to as brain networks. Large datasets
have been generated by several collaborations, such as the Human Connectome Project [13], which sought to
identify functional brain networks using data-driven methods. Many fundamental methods for performing such
an estimate can be formulated based on a regression problem of describing the activity in one region using the
activity in other regions, which can be viewed as a form of self-supervised learning. Examples include such broad
categories as spectral network methods [4], Gaussian graphical models [2], and partial correlation [3].

More recently, deep learning methods from natural language processing (NLP) have been adopted. Such methods
are commonly trained by self-supervised learning methods where the model is optimized to predict masked
portions of the data given other unmasked portions, over a vast dataset. Such models essentially learn a joint
probability distribution of the data. In NLP they are called foundation models, as they can be subsequently
used for other tasks by making conditional inferences on this distribution. When applied to fMRI data, this self-
supervised approach is again a regression problem. An increasing number of recent works use such approaches
[15].

Whether the goal is to extract a network description to be analyzed and interpreted directly, or create a predictive
model that can be used in subsequent tasks, such regression-based models all restrict their information content
to that which can be predicted from activity. In natural language this restriction seems more valid as the
goal of language is to communicate information. There is no such driving force behind functional imaging; its
information content is simply that which current technology manages to measure. Latent information is viewed
statistically, as in some random chance to arise depending on previous outputs. The purpose of this paper is to
analyze this information in more structural detail.



Results

We used the 100 unrelated subjects dataset from the Human Connectome Project [I3]. Each scan contains
functional Magnetic Resonance Imaging (fMRI) data with 96,854 time series, each of which is sampled from a
single voxel in the brain with 1,200 time samples each. The data was preprocessed as described in [6] and was
subsequently filtered spatially using a 5 mm kernel with the Connectome Workbench [7]. Finally, each time
series was standardized to zero mean and unit variance. Cortical regions were parcellated using the Human
Connectome Project Multimodal Parcellation (MMP) Atlas [B], which resulted in 379 regions of interest (ROI)
when combined with subcortical regions. We implemented a linear autoencoder model that predicts the total
fMRI image at a point in time using the images at prior times. We tested a range of time window sizes and
hidden-layer sizes and found a window of 12 seconds (6 samples) and a 128-node hidden layer provided the best
prediction. As this resulted in roughly 291 thousand parameters, we used PyTorch [8] to implement it as a
neural network model with two linear layers and trained it using stochastic gradient descent with a least-squares
loss function.

An example of the result is shown in Fig. [I] giving the ROI for which the predictions are best and worst in
terms of mean-squared error (MSE). The best predicted region is the cortical ROI labeled “Visual2-04_R” in
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Figure 1: Time series for ROI with least and most MSE.

the visual cortex. The worst predicted region is the right accumbens in the basal ganglia. See Table [1| in the
appendix for the 30 best and worst MSE regions.

Figure 2: Surface map of MSE, right and bottom views; hotter (lighter) colors are higher MSE.

Fig. [2] shows a surface map of the MSE for different regions for right and bottom views of the brain. Sen-
sory and somatomotor regions clearly dominate the low-MSE regions, while high-MSE regions are involved
in reward processing, emotional regulation, decision-making, motor control, and sensory integration, among
other functions. Focusing on the cortical regions with high MSE, we find regions involved in cognitive control,



emotional processing, language function, executive decision-making, self-referential thought, and sensory-motor
integration.

In Fig. [[]we also note that the worst-predicted region has a much higher frequency signal, which may reasonably
be expected to be more difficult to predict versus a region with slower activity. As a way of normalizing against
such effects, we next considered the relative predictability of regions by comparing how much they could be
predicted versus the degree to which they were useful in predicting other regions. We defined the predictability
of an ROI as the absolute sum of incoming weights to the node predicting the ROI (the in-degree). We similarly
defined the degree to which an ROI contributed to prediction of others as the absolute sum of weights using the
ROI to predict others (out-degree).

Of particular interest were those ROI that were useful to predict other ROI but were poorly predicted themselves
using others, which we called sources. These might be viewed as disproportionately receiving inputs from some
latent source, such as incoming connections to the brain via sensory information. We estimated these by taking
the ratio of absolute out-degree over absolute in-degree. Conversely, we defined sinks as the inverse of this ratio,
meaning ROI that were well predicted by signals from elsewhere but contributed little themselves to further
signal prediction. These might be viewed as connecting outputs from the brain to the body, among other
possible functions. The ROI with the strongest ratios are visualized in Fig. Sources and sinks are listed in
more detail in the appendix.
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Figure 3: Visualization of strongest sources and sinks; red is higher row/col (sources), blue is higher col/row
(sinks).

Sources include regions involved in visual and auditory processing, executive function, language, motor control,
attention, and sensory integration. Sinks include regions that are involved in motor coordination, visual pro-
cessing, executive function, default mode network activity, and cognitive control. Note that some functions are
included in both lists, and well-known networks such as the default mode network [9] include both sources and
sinks.

Discussion

We provided a basic method to quantify what information is missing from a model trained in a self-supervised
manner and provided an analysis of its spatial variation using real fMRI data. The results appear reasonable, as
sensory and motor regions involved in information incoming to the brain appeared as sources. Similarly, sinks
prominently included regions involved in providing external outputs from the brain, such as the cerebellum. More
interestingly, higher cognitive functions involved both sources and sinks, which may have multiple explanations.
One is that the mental states involving these regions are indeed terminal also, either appearing spontaneously
to lead to subsequent states, or else resulting from some past states but perhaps extinguishing that process in
some competitive decision process.

It is also possible that higher cognitive functions involve complex nonlinear behavior that is harder to predict,
even when the available information might be there. We attempted to employ more complex models, such as
using nonlinear activation functions and more layers in a deep neural network. However, we were not able to
achieve improvement gains over the linear model, perhaps due to the high noise level in the data, especially
relative to the dataset size.

As increasingly large datasets become available, other researchers have been utilizing more complex modern



deep learning models. Examples include [I1] and [I], which use self-supervised learning methods from modern
natural language processing (NLP). Explainable artificial intelligence (XAI) methods [I0] might be adapted
to provide structural interpretations of sources and sinks in such models. Though it should be noted there is
no reason to expect current NLP architectures would prove particularly effective for the very noisy and still
relatively much smaller fMRI datasets compared to NLP. Also, current published methods often use large sets
of task-fMRI data while not utilizing the task information itself, which would help reduce the missing latent
information. And these publications lack a linear baseline for comparison, instead focusing on usefulness of the
model as forming representations useful in so-called downstream tasks.
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Appendix

This appendix gives tables listing the ROI with highest and lowest MSE, as well as with highest source or sink
metrics.

Worst MSE Regions

Best MISE Regions

accumbens_right
accumbens_left
pallidum_right
pallidum_left
amygdala_left
amygdala_right

Default35 R Ctx R
Default74 L Ctx L
diencephalon_left
diencephalon_right
OrbitoAffective02 R Ctx R
OrbitoAffective05 L Ctx L
CinguloOpercular37 L Ctx L
thalamus_right
Frontoparietall6 R Ctx R
Default22 R Ctx R
Default61 L Ctx L
Language23 L Ctx L
thalamus_left
OrbitoAffective06 L Ctx L
CinguloOpercular36 L Ctx L
Somatomotor39 L Ctx L
Language09 R Ctx R
Default33 R Ctx R
Default75 L Ctx L
OrbitoAffective03 R Ctx R
Frontoparietal04 R Ctx R
Default36 R Ctx R
Frontoparietaldl L Ctx L
OrbitoAffective01 R Ctx R

Visual2 04 R Ctx R

Visual2 03 R Ctx R

Visual2 05 R Ctx R

Visual2 30 L Ctx L

Default 70 L Ctx L

Visual2 31 L Ctx L
Somatomotor 01 R Ctx R
Somatomotor 21 L Ctx L
Visual2 32 L Ctx L

Visuall 04 L Ctx L

Visuall 01 R Ctx R
Frontoparietal 48 L. Ctx L
Default 32 R Ctx R
Frontoparietal 24 R Ctx R
Somatomotor 31 L Ctx L
Somatomotor 11 R Ctx R
Somatomotor 22 L Ctx L
Visual2 07 R Ctx R
Somatomotor 02 R Ctx R
Default 31 R Ctx R

Default 69 L Ctx L

Visuall 03 R Ctx R
CinguloOpercular 51 L Ctx L
CinguloOpercular 24 R Ctx R
Visual2 34 L Ctx L
Somatomotor 09 R Ctx R
Frontoparietal 23 R Ctx R
Somatomotor 29 L Ctx L
Dorsal Attention 10 R Ctx R
Visuall 06 L Ctx L

Table 1: Worst and Best MSE Regions



ROI MSE Row Sum Col Sum Row/Col
Visual2-53 L. Ctx L 22580 11.29 7.56 1.49
Visual2-26 R Ctx R 21003 10.47 7.18 1.46
Visual2-21 R Ctx R 17749 10.42 7.52 1.39
Auditory-14 L Ctx L 16811 9.67 6.99 1.38
Frontoparietal-16 R Ctx R 28870 10.57 7.66 1.38
Visual2-48 . Ctx L 18938 10.59 7.79 1.36
Visual2-20 R Ctx R 18735 10.02 7.51 1.33
Frontoparietal-41 L Ctx L 25606 9.44 7.10 1.33
Language-09 R Ctx R 27073 8.95 6.73 1.33
Somatomotor-16 R Ctx R 18731 10.05 7.59 1.32
Default-44 L Ctx L 18689 10.30 7.80 1.32
Auditory-11 L Ctx L 25446 8.94 6.82 1.31
Frontoparietal-39 L Ctx L 13306 11.62 8.99 1.29
Default-75 L Ctx L 26398 10.07 7.79 1.29
Dorsal-Attention-20 L Ctx L 19066 9.40 7.30 1.29
Cingulo-Opercular-56 L Ctx L. 23381 9.56 7.44 1.29
Default-34 R Ctx R 12334 10.45 8.16 1.28
Auditory-05 R Ctx R 20075 8.89 6.94 1.28
thalamus_left 28292 7.58 5.93 1.28
Visual2-15 R Ctx R 10456 11.25 8.83 1.27
Somatomotor-17 R Ctx R 23978 9.05 7.12 1.27
Visual2-28 L. Ctx L 13161 10.04 7.93 1.27
Somatomotor-24 L Ctx L 15216 9.78 7.73 1.26
amygdala_left 39952 7.91 6.26 1.26
Frontoparietal-25 R Ctx R 15630 11.05 8.77 1.26
Default-03 R Ctx R 21360 9.30 7.43 1.25
Auditory-08 L Ctx L 19227 9.50 7.60 1.25
Language-20 L. Ctx L 13894 10.34 8.28 1.25
Default-05 R Ctx R 19074 9.93 7.96 1.25
Default-46 L Ctx L 14162 11.09 8.90 1.25

Table 2: Top source ROI and region metrics



ROI MSE Row Sum Col Sum Col/Row
cerebellum _left 7964 9.61 18.50 1.93
cerebellum_right 6868 9.26 17.56 1.90
Visuall-04 L Ctx L 4501 9.51 16.68 1.75
Visuall-01 R Ctx R 4510 9.48 16.10 1.70
Frontoparietal-30 L. Ctx L 6950 9.94 16.29 1.64
Somatomotor-21 L Ctx L 4244 8.02 12.87 1.60
Frontoparietal-02 R Ctx R 7275 10.19 16.34 1.60
Default-70 L Ctx L 3683 9.98 15.94 1.60
Frontoparietal-48 L Ctx L 4539 9.65 15.03 1.56
Frontoparietal-24 R Ctx R 4760 9.82 15.04 1.53
Somatomotor-01 R Ctx R 4235 8.71 13.27 1.52
Frontoparietal-29 L Ctx L 10951 6.85 10.22 1.49
Default-32 R Ctx R 4652 10.22 15.24 1.49
Frontoparietal-01 R Ctx R 10642 7.51 11.12 1.48
Visual2-31 L Ctx L 3700 8.00 11.79 1.47
Visual2-04 R Ctx R 3128 8.09 11.60 1.43
Default-62 L Ctx L 16709 6.61 9.31 1.41
Visual2-30 L Ctx L 3592 8.17 11.41 1.40
Cingulo-Opercular-12 R Ctx R 9220 8.66 12.02 1.39
Default-69 L Ctx L 5349 9.67 13.24 1.37
Dorsal-Attention-22 L Ctx L 6113 10.49 14.27 1.36
Cingulo-Opercular-51 L Ctx L 5578 9.93 13.28 1.34
Default-31 R Ctx R 5223 9.97 13.25 1.33
Default-24 R Ctx R 18514 6.83 9.06 1.33
Dorsal-Attention-04 R Ctx R 10751 8.62 11.40 1.32
Ventral-Multimodal-03 L. Ctx L 20461 5.94 7.83 1.32
Frontoparietal-07 R Ctx R 9089 9.29 12.11 1.30
Visuall-06 L Ctx L 6104 9.19 11.93 1.30
Orbito-Affective-01 R Ctx R 25551 5.85 7.57 1.29
Orbito-Affective-03 R Ctx R 26229 5.91 7.63 1.29

Table 3: Top sink ROI and region metrics



